ARTICLE ANALYSIS

Analysis of article using Artificial Intelligence tools





Id 2781
Author Boeing G.; Higgs C.; Liu S.; Giles-Corti B.; Sallis J.F.; Cerin E.; Lowe M.; Adlakha D.; Hinckson E.; Moudon A.V.; Salvo D.; Adams M.A.; Barrozo L.V.; Bozovic T.; Delclòs-Alió X.; Dygrýn J.; Ferguson S.; Gebel K.; Ho T.P.; Lai P.-C.; Martori J.C.; Nitvimol K.; Queralt A.; Roberts J.D.; Sambo G.H.; Schipperijn J.; Vale D.; Van de Weghe N.; Vich G.; Arundel J.
Title Using open data and open-source software to develop spatial indicators of urban design and transport features for achieving healthy and sustainable cities
Reference

Boeing G.; Higgs C.; Liu S.; Giles-Corti B.; Sallis J.F.; Cerin E.; Lowe M.; Adlakha D.; Hinckson E.; Moudon A.V.; Salvo D.; Adams M.A.; Barrozo L.V.; Bozovic T.; Delclòs-Alió X.; Dygrýn J.; Ferguson S.; Gebel K.; Ho T.P.; Lai P.-C.; Martori J.C.; Nitvimol K.; Queralt A.; Roberts J.D.; Sambo G.H.; Schipperijn J.; Vale D.; Van de Weghe N.; Vich G.; Arundel J. Using open data and open-source software to develop spatial indicators of urban design and transport features for achieving healthy and sustainable cities,The Lancet Global Health 10 6

Keywords Cities; Global Health; Health Status; Humans; Software; Spatial Analysis; city; crowdsourcing; health equity; human; human experiment; learning; open source software; physical activity; review; walking; city; global health; health status; software; spatial analysis
Link to article https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129911523&doi=10.1016%2fS2214-109X%2822%2900072-9&partnerID=40&md5=eeb0159e47e74a6e7e5b39e10c8620c4
Abstract Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators—for 25 diverse cities in 19 countries—of urban design and transport features that support health and sustainability. We link these indicators to cities’ policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals. © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

Metodology

Technique

Keyword Find research methods used
Tentative Keyword Show Candidate Transition Variables for article (AI method)
Categories Find category for article (AI method)
Crossover theme Find social impact for article (AI method)
Wordcloud Show WordCloud from article (AI method)
Find semantically similar articles Find semantically similar articles (Semantic search)