FIND IMPACT FOR ARTICLE

Analyze article and determine social impact





Id : 2777

Author :
Bustami R.A.; Beecham S.; Hopeward J.

Title


Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System

Reference :


Bustami R.A.; Beecham S.; Hopeward J. Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System,Water (Switzerland) 14 22

Link to article https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142429459&doi=10.3390%2fw14223759&partnerID=40&md5=c873432cda15dbb26d81d3ef96596cd7
Abstract Living walls are becoming a widely used water-sensitive urban design technology that can deliver various economic, social and environmental benefits. One such benefit is to cool the surrounding environment through the process of evapotranspiration. This study measured the evapotranspiration from an instrumented prototype-scale living wall and calculated the resulting evaporative cooling effect. The range of the measured evapotranspiration rates from the living wall was from 41 to 90 mL/mm per plant pot. This equated to latent heat of vaporisation values from 171 to 383 MJ/month/m2. This was then compared with the performance of a non-vegetated water-sensitive urban design technology, namely, a porous concrete pavement. For a typical summer month in a warm temperate climate, it was found that a porous concrete pavement system only had between 4 and 15% of the cooling effect of an equivalent living wall. © 2022 by the authors.



Results:


                            Impact                            

                   Certainity                   

Health and Wellbeing

0.1534
Urban and Territorial Renovation 0.0313
Peoples Engagement and Participation 0.4573
Note: Due to lack of computing power, results have been previously created and saved in database