Analysis of article using Artificial Intelligence tools

Id 2278
Author Kung J.Y.; Ly K.; Shiri A.
Title Text mining applications to support health library practice: A case study on marijuana legalization Twitter analytics

Kung J.Y.; Ly K.; Shiri A. Text mining applications to support health library practice: A case study on marijuana legalization Twitter analytics,Health Information and Libraries Journal

Link to article
Abstract Background: Twitter is rich in data for text and data analytics research, with the ability to capture trends. Objectives: This study examines Canadian tweets on marijuana legalization and terminology used. Presented as a case study, Twitter analytics will demonstrate the varied applications of how this kind of research method may be used to inform library practice. Methods: Twitter API was used to extract a subset of tweets using seven relevant hashtags. Using open-source programming tools, the sampled tweets were analysed between September to November 2018, identifying themes, frequently used terms, sentiment, and co-occurring hashtags. Results: More than 1,176,000 tweets were collected. The most popular hashtag co-occurrence, two hashtags appearing together, was #cannabis and #CdnPoli. There was a high variance in the sentiment analysis of all collected tweets but most scores had neutral sentiment. Discussion: The case study presents text-mining applications relevant to help make informed decisions in library practice through service analysis, quality analysis, and collection analysis. Conclusions: Findings from sentiment analysis may determine usage patterns from users. There are several ways in which libraries may use text mining to make evidence-informed decisions such as examining all possible terminologies used by the public to help inform comprehensive evidence synthesis projects and build taxonomies for digital libraries and repositories. © 2023 Health Libraries Group.



Keyword Find research methods used
Tentative Keyword Show Candidate Transition Variables for article (AI method)
Categories Find category for article (AI method)
Crossover theme Find social impact for article (AI method)
Wordcloud Show WordCloud from article (AI method)
Find semantically similar articles Find semantically similar articles (Semantic search)